

Technical Information: PSB 22

PSB 22 is a cold work tool steel produced by the ESR melting practice.

PSB 22 is characterized by an excellent balance of high wear resistance, and high chipping resistance (toughness).

PSB 22's high tempering temperatures make it a good substrate for most coatings.

Typical Chemical Composition							
Carbon	1.00%	Chromium	8.00%				
Molybdenum	2.10%	Silicon	1.00%				
•							
Vanadium	0.30%	Manganese	0.40%				

SBSM Tool Steel Properties Comparison

Physical Properties

Modulus of Elasticity	30 psi x 10 ⁶ (207 GPa)
Density	. 0.281 lb/in³
Annealed Hardness	210-225 Brinell Hardness (BHN)
Machinability	Similar to A2 Tool Steel

Technical Information: PSB 22

Heat Treatment

Annealing

Heat to 1550° F, hold two hours Slow cool 20° F/hour to 900° F Then air or furnace cool to room temperature

Stress Relieving

Performed prior or after machining to minimize distortion in heat treating $1100/1200^{\circ}$ F, hold two hours then air cool to room temperature

Hardening

Salt bath, protective atmosphere, or vacuum furnace equipment preferred.

High Heat (Austenitizing)

1875/1900°F for 30 minutes at heat.

Quench

Salt bath quench to 1000-1100°F, equalize, then air cool to 150°F.

Vacuum or atmosphere quench rate of a minimum 50 degrees F per minute down to 900°F is critical to achieve best heat treat response.

Temper immediately following quench when material reaches 150°F or below.

Tempering

Minimum 400°F tempering temperature required.

Double tempering is required, triple tempering recommended.

Air cool to room temperature between tempers.

Typical Heat Treat Response

		Hardening Temp		Hardening Temp	
Temperi	ng Temp	1875°F	1024°C	1900°F	1038°C
°F	°C				
As Quenched		62/63 HRC		63/64 HRC	
400	205	61 HRC		61 HRC	
500	260	60 HRC		60 HRC	
600	315	59 HRC		59 HRC	
700	371	60 HRC		60 HRC	
800	427	61 HRC		61 HRC	
950	510	62 HRC		63 HRC	
1000	538	60 HRC		62 H	IRC
1025	552	58 HRC		60 H	IRC