


Technical Information: PSB 67 ESR (DIN 1.2367 modified)

PSB 67 is a premium hot work tool steel with an optimum combination of hot hardness, hot toughness, and excellent temper resistance.

PSB 67 is used in applications as an upgrade to conventional H13. PSB 67 is produced using the Electro-Slag Refining (ESR) process.

Typical Chemical Composition							
Carbon	0.38%	Chromium	5.00%				
Molybdenum	2.90%	Silicon	0.40%				
Vanadium	0.50%	Manganese	0.40%				

SBSM Tool Steel Properties Comparison

Physical Properties

Modulus of Elasticity	
Density	0.283 lb/in ³
Annealed Hardness	200-229 Brinell Hardness (BHN)
Machinability	Similar to H13 Tool Steel

Technical Information: PSB 67 ESR (DIN 1.2367 modified)

Heat Treatment

Annealing

Heat to 1400° F, hold two hours Slow cool 20° F/hour to 600° F Then air or furnace cool to room temperature

Stress Relieving

Performed prior or after machining to minimize distortion in heat treating $1100/1200^{\circ}\text{F, hold two hours}$ then air cool to room temperature

Hardening

Salt bath, protective atmosphere, or vacuum furnace equipment preferred

High Heat (Austenitizing)

1885/1975°F for 30 minutes at heat.

Quench

Salt bath quench to 1000-1100°F, equalize, then air cool to 150°F.

Vacuum or atmosphere quench rate of a minimum 50 degrees F per minute down to 1200F is critical to achieve best heat treat response.

Temper immediately following quench

Tempering

Minimum 1000°F tempering temperature required.

Double tempering is required, triple tempering recommended.

Air cool to room temperature between tempers.

Typical Heat Treat Response

Hardening Temp		Tempering Temp		Hardness	
°F	°C	°F	°C	HRC	
1940	1060	1000	555	55	
		1050	570	53	
		1100	595	52	
		1200	650	43	
Thermal Conductivit	:y R	oom T	660 F	1262 F	
			350 C	700 C	
W/m*K		30.8	33.5	35.1	
Thermal Expansion	Roo	m T-100C	Room T-300C	Room T-500C	Room T-700C
10 -6 m/m*K		11.9	12.6	13.1	13.5

04-27-16