Your First Choice for Specialty Metals

A2-Technical Data

General Description:

A2 is an air hardening cold work tool steel with high wear resistance and good toughness. This combination of properties makes it well suited to a wide variety of tooling applications, including various cold work applications plus molding and processing of abrasive plastics.

Example of applications:

Blanking dies, thread roll dies, forming tools, trim dies, punches, shear blades, gauges, wear inserts and plastic molding applications.

Chemical Composition					
Carbon	Molybdenum	Vanadium	Chromium	Silicon	Manganese
0.95-1.05%	0.90 - 1.40%	0.15 - 0.50%	4.75 - 5.50%	0.10-0.50%	0.40 - 1.00%

D2

Typical Heat Treat Response				
Hardening Tem	np Tempering Temp °F	Hardness HRC	Charpy C-notch Toughness - Ft-lbs	
1775	As quenched	64		
	300	62		
	400	61	31	
	500	60	41	
	600	59	37	
	700	58	33	
	800	58	31	
	900	58	29	
	1000	57	41	
	1100	51		

A2

	Size Changes During Hardening			
	Hardening Temp°F	Tempering Temp°F	HRC	Longitudinal Size Change %
Ī	1775	500	61	0.10%
	1775	600	59	0.09%

S7

Surface Treatment

A2 can be given standard surface treatments such as nitriding, titanium nitride coating, or hard chrome plating if desired. When gas nitriding, harden from the high side of the temperature range and single temper at 1000 $^{\circ}\text{F}$; then use standard nitriding procedures.

A2 - Technical Data

Heat Treatment

Annealing

Heat to 1600°F, hold two hours, slow cool (50 °F/hour maximum) to 1200 °F, air cool. Typical annealed hardness:197/241 BHN.

Stress Relieving

Annealed material: Heat to 1200/1250 °F, hold two hours, cool in still air. Normally done after rough machining.

Hardened material: Heat to 25 °F below original tempering temperature, hold two hours, cool in still air. Normally referred to as stress tempering.

Hardening

Preheat: 1350/1450 °F, let part equalize.

High Heat (Austenitizing)

1750/1800 °F, 30/45 minutes holding time at temperature.

Quench

Air, positive pressure vacuum to 150 °F.

Tempering

400/1000 °F, hold 2 hours at temperature, air cool to room temperature between tempers. Temper twice. Cryogenic Treating may improve long term dimensional stability by transforming retained austenite. Refrigeration treatments should generally be performed after the first temper, and must be followed by a temper.

Phy	vsical	Pro	perties
	, sicai		PCI LICS

Modulus of Elasticity	30 PSI x 10 ⁶ (207GPa)	Density	0.284 lb/ln ³
Annealed Hardness	197/241 Brinell Hardness (BHN)	Machinability	80% of O1