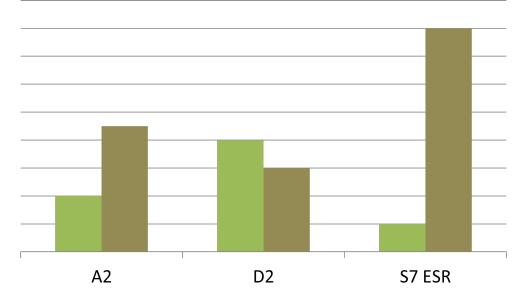
SB Specialty Metals LLC

Your First Choice for Specialty Metals

D2– Technical Data


General Description:

D2 is a high carbon, high chromium cold work tool steel characterized by very good wear resistance. D2 is used in a variety of cold work applications.

Example of applications:

Rotational cutting dies, forming rolls and dies, thread roll dies, blanking dies and punches, industrial knives and cutlery knives.

Chemical Composition							
Carbon	Molybdenum	Vanadium	Chromium	Silicon	Manganese		
1.40 - 1.60%	0.70 - 1.20%	0.50 - 1.10%	11.00 - 13.0%	0.10 - 0.60%	0.25 - 0.45%		
Comparison Chart • Wear Resistance		Chipping Res	istance				

Typical Heat Treat Response							
Hardening Temp °F	Tempering Temp °F	Hardness HRC	Charpy C-Notch Toughness - FtIbs				
1850	As Quenched	63/64					
	300	62	17				
	400	61	21				
	500	60	23				
	600	59	22				
	700	58	22				
	800	58	21				
	900	58	21				
	1000	55	19				

Size Changes During Hardening						
Hardening Temp °F	Tempering Temp °F	HRC	Longitudinal Size Change %			
1850	400	61	+0.03%			
1850	700	58	+0.02%			
1850	950	56	+0.05%			

Surface Treatment

Standard surface treatments such as nitriding, titanium-nitride coating, or hard chrome plating can be used. Prior to nitriding or PVD treatment, must double temper at or above process temperature.

1-800-365-1116

WWW.SBSM.COM

D2- Technical Data

Heat Treatment

Annealing

Heat to 1600°F, hold for two hours. Slow cool 25°F/hour to 1000°F. Then air or furnace cool to room temperature.

Stress Relieving

Normally performed after machining to minimize distortion in heat treating. 1200°F, hold two hours. Then air cool to room temperature.

Hardening

Protective atmosphere or vacuum furnace equipment preferred.

High Heat (Austenitizing)

Preheat to 1400-1450°F - let part equalize.

Then austenitize at 1825-1875°F, holding time at austenitizing temperature is 30-45 minutes. Longer holding times may e required depending upon overall cross section of part being heat treated.

Quench

Vacuum or atmosphere quench rate of a minimum 50 °F per minute down to 1200 °F, then continue quench to room temperature.

Temper immediately following quench.

Tempering

Minimum 400°F tempering temperature required.

1-800-365-1116

Double tempering is required, triple tempering recommended. Each temper for a minimum of two hours at tempering temperature. Air cool to room temperature between tempers.

Physical Properties					
Modulus of Elasticity	30 PSI x 10 ⁶ (207GPa)	Density	0.280 lb/ln ³		
Annealed Hardness	220-235 Brinell Hardness (BHN)	Machinability	65% of O1		

WWW.SBSM.COM