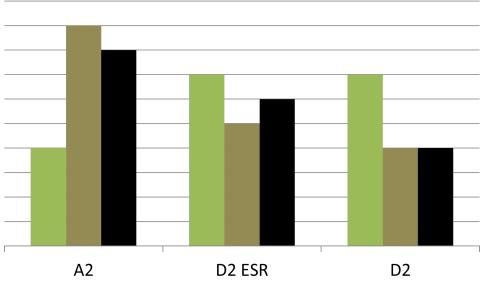
Your First Choice for Specialty Metals

D2 ESR - Technical Data

General Description:

D2 ESR is an upgrade to conventional D2. The Electro Slag Remelt (ESR) process provides higher toughness and better cleanliness.


D2 ESR is a high carbon, high chromium cold work tool steel characterized by very good wear resistance and is used in a variety of cold work applications.

Example of applications:

Rotational cutting dies, forming rolls and dies, thread roll dies, blanking dies and punches, industrial knives and cutlery knives.

Chemical Composition						
Carbon	Molybdenum	Vanadium	Chromium	Silicon	Manganese	
1.40 - 1.60%	0.70 - 1.20%	0.50 - 1.10%	11.00 - 13.0%	0.10 - 0.60%	0.25 - 0.45%	

Typical Heat Treat Response				
Hardening Temp	Tempering Temp	Hardness HRC	Charpy C-Notch	
°F	°F		Toughness - Ftlbs	
1850	As Quenched	63/64		
	300	62	17	
	400	61	21	
	500	60	23	
	600	59	22	
	700	58	22	
	800	58	21	
	900	58	21	
	1000	55	19	

Size Changes During Hardening				
Hardening Temp°F	Tempering Temp°F	HRC	Longitudinal Size Change %	
1850	400	61	+0.03%	
1850	700	58	+0.02%	
1850	950	56	+0.05%	
Surface Treatment				

Standard surface treatments such as nitriding, titanium-nitride coating, or hard chrome plating can be used. Prior to nitriding or PVD treatment, must double temper at or above process temperature.

D2 ESR - Technical Data

Heat Treatment

Annealing

Heat to 1600°F, hold for two hours.

Slow cool 25°F/hour to 1000°F.

Then air or furnace cool to room temperature.

Stress Relieving

Normally performed after machining to minimize distortion in heat treating. 1200°F, hold two hours.

Then air cool to room temperature.

Hardening

Protective atmosphere or vacuum furnace equipment preferred.

High Heat (Austenitizing)

Preheat to 1400-1450°F - let part equalize.

Then austenitize at 1825-1875°F, holding time at austenitizing temperature is 30-45 minutes.

Longer holding times may e required depending upon overall cross section of part being heat treated.

Quench

Vacuum or atmosphere quench rate of a minimum 50 °F per minute down to 1200 °F, then continue quench to room temperature.

Temper immediately following quench.

Tempering

Minimum 400°F tempering temperature required.

Double tempering is required, triple tempering recommended. Each temper for a minimum of two hours at tempering temperature. Air cool to room temperature between tempers.

Physical Properties	Phy	าysica	l Prop	perties
---------------------	-----	--------	--------	---------

Modulus of Elasticity	30 PSI x 10 ⁶ (207GPa)	Density	0.280 lb/ln ³
Annealed Hardness	220-235 Brinell Hardness (BHN)	Machinability	65% of O1