SB Specialty Metals LLC

Your First Choice for Specialty Metals

S7 ESR – Technical Data

General Description:

S7 ESR is used as an upgrade to conventional S7. The Electro Slag Remelt (ESR) process provides higher toughness and better cleanliness than conventional S7.

S7 ESR is a shock resistant, cold work tool steel with high impact toughness at relatively high hardness levels. S7 ESR has improved polishability over conventional S7.

Example of applications:

Punches and dies subject to heavy impact, warm forging/heading dies, plastic injection molds and heavy duty shear blades.

Chemical Composition						
Carbon	Molybdenum	Vanadium	Chromium	Silicon	Manganese	
0.45 - 0.55%	1.30 - 1.80%	0.35% max	3.00 - 3.50%	0.20 - 1.00%	0.20 - 0.90%	
Comparison	Chart	■ Toughness	Wear Resistance			

Typical Heat Treat Response						
Hardening Temp °F	Tempering Temp °F	Hardness HRC	Charpy C-Notch Toughness FtIbs			
1740	300	59	85			
	400	57	125			
	500	55	125			
	600	54	115			
	700	53	105			
	800	53	105			
	900	52	120			
	1000	51	150			
	1100	47	190			

Size Changes During Hardening						
Hardening Temp °F	Tempering Temp °F	HRC	Longitudinal Size Change %			
1740	400	57	+0.04%			
1740	1000	51	+0.05%			

Surface Treatment

Because of the low tempering temperatures normally used, S7 is not typically suitable for nitriding or similar treatments.

1-800-365-1116

WWW.SBSM.COM

S7 ESR – Technical Data

Heat Treatment

Annealing

Heat to 1550°F, hold two hours, slow cool (50°F/hour max) to 1000°F, then air cool to room temperature. Typical annealed hardness: 187/220 BHN.

Stress Relieving

Annealed Material: Heat to 1200/1250°F, hold two hours, cool in still air.

Hardened Material: Heat to 50°F below tempering temperature, hold two hours, cool in still air.

Hardening

Preheat to 1350/1400°F, equalize.

High Heat (Austenitizing)

1725/1750°F, hold 30/45 minutes at temperature.

Quench

Air, positive pressure vacuum, interrupted oil to 150°F. Parts with cross sections over 2" thick may require oil quenching to attain full hardness.

Tempering

350/1000°F, two hours at tempering temperature per temper, air cool to room temperature between tempers.

Double tempering is recommended.

Physical Properties					
Modulus of Elasticity	30 PSI x 10 ⁶ (207GPa)	Density	0.283 lb/ln ³		
Annealed Hardness	187/220 Brinell Hardness (BHN)	Machinability	75% of O1		