

Introduction to PSB27

PSB27

Only from SB Specialty Metals Your First Choice for Specialty Metals

- Spray Form technology
- The Evolution of Particle Metallurgy tool
 Steels and High Speed Steel
- Streamlined Powder Metallurgy process
- Higher wear resistance
- Improved toughness and chip resistance

The Spray Form Process

The technology for tool steel production has evolved. Conventional **Spray Form** HIP'd **EVOLUTION #1 EVOLUTION #2 Particle Metallurgy Production Particle Metallurgy Atomizer System** (inert gas) Spray Chamber Gas Atomication **Spray Formed** Biending Screeni Billet Tessing tatic Collector Ingot Ingot Ingot

Steel Mill built in 2018 for Spray Form

Spray Form Ingot

Click below to see a video animation

Microstructure

Steel Structure

PM steel processes result in uniform structures and homogeneous carbide distribution. PM Steels offer properties above and beyond conventional steel making capabilities.

Conventional

Sprayform PM

HIP'd PM

Advantages of Particle Metallurgy

- Very uniform/homogeneous microstructure
- Improved mechanical properties
 - Wear resistance
 - Toughness
 - Increased hardness
- Freedom from macro-segregations
- Improved dimensional stability in heat treatment

PSB 27

	D	SB Spec	ialty Met Choice for Specia	als LLC	
		PSB27 -	Technical D	ata	
General Desc PSB27 is a pre higher toughne in improved tou 3 X the wear re	cription: mium spray forme ss and higher wea ghness and chip r sistance of conver	d D2 tool steel. It ir resistance than resistance compa ntional D2.	t is ideal for many c conventional D2. T red to conventionally	old work applicat he spray forming y produced tool s	tions requiring g process results steels. PSB27 has
Example of a Rotational Cutt components, in	pplications: ing Dies, forming r idustrial knives and	olls and dies, thre d cutlery knives.	ead roll dies, blankir	ng dies and punc	hes, injection screw
Chemical Co	mposition				
Carbon	Molybdenum	Vanadium	Chromium	Silicon	Manganese
1.50 - 1.60%	0.65 - 0.80%	0.75 - 0.90%	11.00 - 12.50%	0.40 - 0.50%	0.30 - 0.45%
			PSR27	M2	
Typic	al Heat Treat De	nonse		Changes Durin	a Hardenina
Hardening Temp Ten	npering Temp Hardness	IRC Charpy C-Notch	Hardening	Tempering TempS	HRC Longitudinal
1900	400 61	24	1900	500	60.5 +.03%
	500 60	26	1900	950	61 +0.04%
	650 59	25		Surface Treat	ment
	800 58 950 61	24 23	Standard surface trea hard chrome plating c must double temper a	tments such as nitriding, an be used. Prior to nitri t or above process temp	Stanium-nitride coating, or ding or PVD treatment, erature.
	1-800-3	365-1116	WWW.SE	SM.COM	

SB Specialty Metals LLC Your First Choice for Specialty Metals					
	PSB27 – Technical Data				
Heat Treatment					
Annealing Heat to 1600°F, hold for t Slow cool 25°F/hour to 10 Then air or furnace cool to	wo hours. 00°F. o room temperature.				
Stress Relieving Normally performed after machining to minimize distortion in heat treating. 1100/1200°F, hold two hours. Then air cool to room temperature.					
Hardening	anhara ar uaruum furnasa an inma	at proformed			
High Heat (Austenitizing) Preheat to 1350-1400°F - let part equalize. Then austenitize at 1870/1900°F for a minimum of 30 minutes at austenitizing temperature. Quench Salt bath quench to 1000-1100°F, equalize, then air cool to 150°F. Vacuum or atmosphere quench rate of a minimum 50 °F per minute down to 1200 °F is critical to achieve best heat treat response. Temper immediately following quench.					
Tempering Minimum 400°F tempering temperature required. Double tempering is required, triple tempering recommended. Air cool to room temperature between tempers.					
Physical Properties					
Modulus of Elasticity	30 PSI x 10 ⁶ (207GPa) 215-255 Brinell Hardness (BHN)	Density Machinability	0.283 lb/In ³		

WWW.SBSM.COM

1-800-365-1116

Applications

- Non-woven industry
- Rolling steel processing industry
- Recycling industry
- Slittering
- Blanking and Forming

- Steel Stamping
- Cutting
- Powder Compaction
- Brick Forming
- Sand blasting
- Threading
- Forming autoparts

Case Study - Rotary Die Cutting Non-woven Material – Die for a pad machine final cutter.

10" Diameter Rotary Die

	PSB 27	Conventional D2
Production	84 million	34 million
Condition	No indications of microcracks	Micro Crack indications

Rotary Crush Die

Financial Benefits Model

Total Lifecycle Model- Rotary Die – Non-woven

		PSB27	(Conv. D2
Material Price (Per mm)	\$	600.00	\$	300.00
Machining + Grinding	\$	5,000.00	\$	5,000.00
Coating		0		0
Heat Treatment	\$	120.00	\$	120.00
other		0		0
Lifecycle Cost of the Materials (LC)	\$	5,720.00	\$	5,420.00
Usable Height in mm (UH)		5		5
Material Costs/mm (MC)	\$	1,144.00	\$	1,084.00
Trip Length (Prod. Amount (Unit)/regrind = TL)	9	975,000.00		325,000.00
Standard Grind Off in mm (SGO)		0.15		0.30
Productive Performance	6,5	500,000.00	1,	,083,333.00
Material Related Costs/Produced unit (MTR)	\$	0.0002	\$	0.0010
Grinding Costs	\$	700.00	\$	500.00
Tooling Transport Cost	\$	50.00	\$	50.00
Changes of tooling	\$	200.00	\$	200.00
Recoating	\$	-	\$	-
Other	\$	-	\$	-
Total Regrind cost	\$	950.00	\$	750.00
Processing Cost/Produced Unit (PTR)		\$0.0010		\$0.0023
Downtime costs (DC)	\$	450.00	\$	450.00
Downtime related costs/Produced Unit	\$	0.0005	\$	0.0014
Total Cost per produced unit	\$	0.0016	\$	0.0047

Total Tooling Cost per part produced

Case Study - Cutting wallpaper structured with wood fibers

16" Dia x .183 Cutting Wheel		Additional notes from study		
	PSB27	Conventional	PSB27	Conventional D2
		D2	The production	Several production
Run time before regrind	360 hours	240 hours	down time was reduced due to a	stoppages due to blockages of weed
Tool hardness	60 HRC		keener edge on the	fibers between
			less maintenance time	KIIIIE.

Case Study – Threading Die

Die Life

Die photo

	PSB27	Conventional D2
Hardness	63 HRC	61 HRC
Die Lifetime	600 hours	200 hours

